A Robust, Decentralized Approach to RF-Based Location Tracking
نویسندگان
چکیده
Wireless transmitters deployed throughout an indoor environment offer the opportunity for accurate location tracking of mobile users. Using radio signal information alone, it is possible to determine the location of a roaming node at close to meter-level accuracy. We are particularly concerned with applications in which the robustness of the locationtracking infrastructure is at stake. For example, firefighters and rescuers entering a building can use a heads-up display to track their location and monitor safe exit routes. Likewise, an incident commander could track the location of multiple rescuers in the building from the command post. In this paper, we present a robust, decentralized approach to RFbased location tracking. Our system, called MoteTrack, is based on low-power radio transceivers coupled with a modest amount of computation and storage capabilities. MoteTrack does not rely upon any back-end server or network infrastructure: the location of each mobile node is computed using a received radio signal strength signature from numerous beacon nodes to a database of signatures that is replicated across the beacon nodes themselves. This design allows the system to function despite significant failures of the radio beacon infrastructure. In our deployment of MoteTrack, consisting of 20 beacon nodes distributed across our Computer Science building, we achieve a 50 percentile and 80 percentile location-tracking accuracy of 2 meters and 3 meters respectively. In addition, MoteTrack can tolerate the failure of up to 60% of the beacon nodes without severely degrading accuracy, making the system suitable for deployment in highly volatile conditions. We present a detailed analysis of MoteTrack’s performance under a wide range of conditions, including variance in the number of obstructions, beacon node failure, radio signature perturbations, receiver sensitivity, and beacon node density.
منابع مشابه
Cooperative Control of Multiple Quadrotors for Transporting a Common Payload
This paper investigates the problem of controlling a team of Quadrotors that cooperatively transport a common payload. The main contribution of this study is to propose a cooperative control algorithm based on a decentralized algorithm. This strategy is comprised of two main steps: the first one is calculating the basic control vectors for each Quadrotor using Moore–Penrose theory aiming at coo...
متن کاملAdaptive Observer-Based Decentralized Scheme for Robust Nonlinear Power Flow Control Using HPFC
This paper investigates the robust decentralized nonlinear control of power flow in a power system using a new configuration of UPFC. This structure comprises two shunt converters and one series capacitor called as hybrid power flow controller (HPFC). A controller is designed via control Lyapunov function (CLF) and adaptive observer to surmount the problems of stability such as tracking desired...
متن کاملDecentralized Robust Power System Stabilizer Design
This paper suggests a method for designing PSS to damp multi-machine power system oscillations. The method is based on robust control theory. First, the conventional method for designing robust controller in LMI framework is illustrated. Then, the suggested method is given, in which, a PID output feedback controller is tuned using the LMI approach. Mostly, the classical methods are used t...
متن کاملA Robust Scenario Based Approach in an Uncertain Condition Applied to Location-Allocation Distribution Centers Problem
The paper discusses the location-allocation model for logistic networks and distribution centers through considering uncertain parameters. In real-world cases, demands and transshipment costs change over the period of the time. This may lead to large cost deviation in total cost. Scenario based robust optimization approaches are proposed where occurrence probability of each scenario is not know...
متن کاملRobust Tracking Control of Satellite Attitude Using New EKF for Large Rotational Maneuvers
Control of a class of uncertain nonlinear systems, which estimates unavailable state variables, is considered. A new approach for robust tracking control problem of satellite for large rotational maneuvers is presented in this paper. The features of this approach include a strong algorithm to estimate attitude, based on discrete extended Kalman filter combined with a continuous extended Kalman ...
متن کاملRobust Integral Sliding-Mode Control of an Aerospace Launch Vehicle
An analysis of on-line autonomous robust tracking controller based on variable structure control is presented for an aerospace launch vehicle. Decentralized sliding-mode controller is designed to achieve the decoupled asymptotic tracking of guidance commands upon plant uncertainties and external disturbances. Development and application of the controller for an aerospace launch vehicle during a...
متن کامل